

CA Gen Asynchroneous
Communucations Guide

The Best Kept Secret
Rony Van Hove, Sr. Principal Consultant
24 May 2009

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 2/22

 CA Gen has been in the market since the late
1980’s. It has proven its usefulness and
productivity to large corporations around the
world and CA recognized this through the years.
The use of CA Gen’s technologies for CA’s
Mainframe 2.0 strategy highlights the importance
and enduring factor of CA Gen.

New features and capabilities are introduced by
each subsequent release of CA Gen, some of
the features are not well known to the
development community. One such feature is
Asynchroneous server calls. In today’s pressure
for better Service Levels and efficiency, the
asynchroneous feature may prove a significant
tool to achieve better response times, increase
service levels and productivity. This Guide
explains how you can benefit from it.

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 3/22

CA Gen Asynchronous communications ... 4
Synchronous vs. Asynchronous ... 4
Asynchronous Communication Support in CA Gen .. 6

Statements: ... 6

USE ASYNC .. 6
target_server_pstep ... 6
POLL | NOTIFY EVENT | NO RESPONSE ... 6
viewname async_request .. 7
event_name ... 7

PSTEP | GLOBAL ... 7

Scenarios: ... 9
Asynchronous Processing – Classic way ... 9

Asynchronous Processing with Event Actions ... 10
Asynchronous Fire-and-Forget Processing .. 11
Special Asynchronous Call Cases: Simple calls .. 11

The GLOBAL-scope technique .. 11

Program Flow of a Search Procedure: .. 12
Procedure Step body of OPEN window event of SEARCH Client Procedure 13

Event Actions to Ignore or New request. ... 14
Event Action ‘SHOW_RESULTS: .. 15

Other Event Actions ... 16

Program Flow of the CLIENT_MENU procedure ... 16

Procedure Body of OPEN event of Client_Menu Procedure 17
The POLLEVENT Event Action: .. 17
View the Results or Ignore Events ... 18

RESULTS command in the SEARCH CLIENT PROCEDURE 18
When to poll? ... 19

Special Asynchronous Call Cases: Multiple Calls ... 19
Conclusions: ... 21

History

Ver. Status Who Date Changes, Actions

1.0 Final Rony Van Hove 27/9/2003 Initial version

1.1 Final Rony Van Hove 14/2/2004 Translated from Dutch to
English.

1.2 Final Rony Van Hove 17/8/2004 Re-branding from Advantage
to AllFusion and corrected a
few errors.

1.6 Final Rony Van Hove 14/05/2006 Minor corrections

1.7 Final Rony Van Hove 22/02/2007 Revised

2.0 Final Rony Van Hove 24/05/2009 Revised

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 4/22

CA Gen Asynchronous communications

This Guide describes the asynchronous communication feature of CA Gen. This functionality

offers new possibilities to improve performance for critical applications. The Guide details

best practices how this feature could be best used for specific situations.

The supplied documentation with the software doesn’t provide practical examples or

guidelines how this could be implemented. This Guide addresses this topic in detail.

Synchronous vs. Asynchronous

You could only use synchronous server calls in pre-COOL:Gen 5.0 releases; i.e. the server

was called and the client had to wait until the response came back from the server. All client-

processing was stopped. This technique is also called often ‘Blocking Calls’. This way of

calling a procedure step is the most common even today.

The synchronous behavior is in the most cases fine because the sequence of actions or

processes required the output of the preceding process.

However occasionally there are situations that this behavior is not best suited and could cause

serious performance complains from end-users; e.g. a complex server procedure would a lot

of DB2 actions could take several seconds before it completes, this has the negative effect that

the end-user has to wait couple of seconds before he can do something.

Example:

If you have sequences of server procedure calls then the blocking effect could have an adverse

effect on the end-user experience of the application. The user is often disgruntled and he feels

‘not being’ serviced properly because he has to wait too long before an answer comes.

USE ServerA (Procedure)

USE ServerB (Procedure)

Server A

Server B

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 5/22

To resolve this problem CA Gen introduced asynchronous communication calls. This was

first introduced with COOL:Gen 5.0 for a selected set of middlewares. This feature was

further extended to other middlewares in 6.0 release of CA Gen to ensure that all users can

enjoy this feature.

To enable this feature some extra statements have been introduced: Asynchronous USE

statements. The new statements make asynchronous programming remarkable easy and a

breeze in day to day use. Asynchronous programming techniques are often complex and prone

to errors and hard to debug. CA Gen made this easy and quick by hiding the complexity of all

the thread handling etc… Every CA Gen developer is able to implement in less than a day a

asynchronous communications.

Existing applications can be enhanced by a few statements to benefit from asynchronous

communications. No major redesign is required.

An existing client procedure can be tailored for asynchronous communications in a half day or

less.

Example

The asynchronous USE statements allow you to execute multiple server transactions in

parallel (e.g. A and B) without waiting before one of them is finished. The procedure logic

after the last async USE statement will continue. There is no wait for response from the server

procedures.

It is possible to capture the response or even to ignore the response (=fire-and-forget) of the

server(s).

This concept is perfect when you have search requests that may take considerable long time to

fulfill; the end-user is not being blocked by the complex search requests and he can continue

with other stuff in the application until he gets a notification that the response came back. This

notification event may fill up a listbox or write an entry in a table that can be consulted

afterwards.

No server procedure medications are required at all!

USE ASYNC ServerA (Procedure)

USE ASYNC ServerB (Procedure)

GET ASYNC ServerA

GET ASYNC ServerB

Server A

Server B

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 6/22

NOTE::

If you use TCP/IP as your preferred middleware then you must regenerate and relink the

server transactions with CA Gen 6.x, r7.x

COOL: Gen 5.x doesn’t support TCP/IP asynchronous calls.

Existing pre COOL:Gen 5.x (4.1A, Composer 4, Composer 3 etc) server transactions need to

be regenerated and relinked with at least 5.x in order to take advantage of this feature. We do

recommend when you have to regenerate to ensure that you are using CA Gen 7.6.

Asynchronous Communication Support in CA Gen

CA Gen introduces several new statements for this feature:

USE ASYNC Call server asynchronous.

GET ASYNC Get server response from an asynchronous

call.

CHECK ASYNC Check the status of an asynchronous call.

IGNORE ASYNC Ignore the response of an asynchronous call.

Statements:

USE ASYNC

This is the asynchronous server call variant of ‘Procedure Step USE’-statement. The statement

will call the server transaction and it will pass the control back to the client immediately

without waiting for the response.

Unlike Procedure Step USE statement, this statement allows you to verify the return code of

your server transaction request.

The complete syntax of the statement:

+--USE ASYNC target_server_pstep

| IDENTIFIED BY: viewname async_request

| RESPONSE HANDLING: POLL | NOTIFY EVENT | NO RESPONSE

| RESPONSE EVENT: event_name

| RESPONSE SCOPE: PSTEP | GLOBAL

| WHICH IMPORTS…

+--WHEN request accepted

+--WHEN request not accepted

+--

target_server_pstep: name of the server procedure step.

POLL | NOTIFY EVENT | NO RESPONSE: Type of asynchronous server call:

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 7/22

POLL The response of the server will later be

processed.

NOTIFY EVENT If the response is available from the server then

an notify event <event_name> will be triggered

and executed.

NO RESPONSE Ignore the response of the server (fire-and-

forget).

viewname async_request: workset view for the result of the asynchronous call request.

TIP:

We recommend to use for each new asynchronous server procedure call to use its own

separate workset view to store the result. This practice will make inspection of the worksets of

several different asynchronous calls afterwards easier and avoids mistakes.

This workset contains the data concerning the request whether it was a successful call or a

failure etc.

ID NUMBER(8) Unique ID of the call; each server call is

assigned with an unique ID. This ID should be

used to recover the response, check the status or

to ignore the response.

REASON_CODE CHAR(8) Reserved, for future use.

LABEL MIXEDTEXT(128) Optional field, can be used for a more

userfriendly message

ERROR_MESSAGE MIXEDTEXT(2048) Runtime error message

The fields LABEL and ERROR_MESSAGE are defined as ‘MIXED Text’ in CA Gen.

If a call to a server procedure fails then there is no standard error dialog box shown. The error

is captured by the ASYNC call statement. The actual error message (TIRMxxx message) is

stored in the field ERROR_MESSAGE.

event_name: name of the event action (only valid for NOTIFY EVENT).

PSTEP | GLOBAL: this indicates the scope of the asynchronous call:

PSTEP: if you use a PSTEP-scope then the answer of the server transaction is only accessible

and valid as long as the Procedure Step is running. As soon as the procedure step is finished

due an ESCAPE or a normal ending and you didn’t process the response then the response is

lost.

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 8/22

GLOBAL: the response is never lost after you have left the procedure step (or flowing to

another procedure step etc). The response can be checked and recovered at any place in a

procedure step.

NOTICE:

If you don’t use the GLOBAL scope carefully then it may cause memory problems after long

non-stop usage of the client part (i.e. no exiting of the client). Each request requires approx.

up to 32K of storage to store the results of a server procedure step. If the client never checks

this response and thus never freeing the storage of the response then after a long time there

will be no more memory left for new calls or other things. You have basically created a

memory leak by not checking the response.

The only solution for this problem is to exit the application and restart it again.

More info in section Special Asynchronous Call Cases.

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 9/22

Scenarios:

Asynchronous Processing – Classic way

The USE ASYNC is called in the beginning of the procedure. The control is passed back

immediately to the procedure once the server transaction is started. The client procedure is

now able to process other statements. At the end of the procedure, you have to verify the

answer(s) from the server transaction(s).

The REPEAT-UNTIL construction is required because we cannot predict when the server

transaction is finished. If the server is not finished then the GET_ASYNC will give a

PENDING as response.

Additionally you can add special processing in case of a communication error, server error or

an invalid ID.

Basically the REPEAT-UNTIL continues polls when this is finished.

The scope for this case should be PSTEP i.e. the response will only be processed in this

procedure.

Ensure that the workset for

IDENTIFIED BY is always the same

as you have used for the USE

ASYNC statement. … instructions …

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 10/22

Asynchronous Processing with Event Actions

An asynchronous call is initiated and when a response is available then an event is kicked-off.

The response type for this call should be NOTIFY EVENT (see above example in

NOTIFY_EXAMPLE procedure). The event action should always in the same procedure step.

This event action will contain the instructions to process the response.

Because this NOTIFY EVENT requires an event action and these events are always local to

the procedure, the scope of the call is always PSTEP.

The workset view for async_request must turn off the flag ‘Initialize on every entry’ if this is

a local work view.

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 11/22

Asynchronous Fire-and-Forget Processing

The Fire-and-Forget construction uses the handling type NO RESPONSE. You never have to

check the response of the server.

This is the perfect construction to submit transactions which are ‘semi-batch’.

Special Asynchronous Call Cases: Simple calls

There could be situations where asynchronous calls are executed, but their response should be

handled somewhere else in the application.

An example: an end-user is launching a heavy search request in a window and since it is a

heavy-duty server transaction, it will be started in asynchronous mode.

The user may now continue with other things while the search transaction is in progress in the

background (server).

Once the response is available from the server, the results may not be directly viewable

because the procedure step that started the call may no longer be active.

CA Gen wouldn’t be CA Gen if there is no solution for this type of cases. CA Gen has a

special instruction to cope with these situations: the GLOBAL-scope.

The GLOBAL-scope technique

Dialog Flow:

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 12/22

From the main menu client you can flow to a window for lookups. This lookup procedure will

be able to kick-off asynchronous calls for complex search patterns.

The end-user may when necessary flow back to the main menu and perform some other

procedures while the search in the background is in progress.

Use the following programming technique:

Program Flow of a Search Procedure:

Start

Another request in
process?

Ask user to interrupt the
previous request or wait
for that response

Cancel the previous
request?

Enter new search pattern

Ignore the previous request Wait until a response is
available.

Call the server
asynchronously

Yes No

No

Yes

Show results

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 13/22

Because the client procedure works event-driven, we will code the different sections of the

diagram in event actions:

Event SHOW_RESULTS: will be called via a TIREVENT. This event will process the

response and show the results.

Event ENTER_NEW_SEARCH_PATTERN: will be called via a TIREVENT. This event

will display a dialog box to enter the search pattern. If the user clicks OK then it will start the

search transaction.

Both events could happen at any time, so therefore we have to define them as user-defined

events via TIREVENT.

Example code fragements:

Procedure Step body of OPEN window event of SEARCH Client Procedure

The procedure step will check the COMMAND: SEARCH or RESULTS. Why the command

RESULTS is required will be explained later.

If the command SEARCH is used then the procedure step will check whether an outstanding

search request exists. If this is the case then the user will be asked whether to ignore the

previous request or wait for the results of that request.

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 14/22

Event Actions to Ignore or New request.

There are two possible answer for the above question:

Yes – ignore the previous request

No – wait for response.

This means we need two additional click events:

Attention: you should enable for both click-events the flag ‘Always’ for ‘Import to Exprt’:

Code to wait until response is

available from previous request

IGNORE gives

the possibility to

ignore the

response.

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 15/22

If the user clicks No then the client will wait until a response is available. Once this response

is available the user-event ‘SHOW_RESULTS’ is activated via TIREVENT.

NOTE:

Be aware that we always set the asynchronous ID to 0 after the response has been processed.

While this is not strictly required, we highly recommend to do this. This allows us afterwards

whether an outstanding request is still in progress or not.

If the user wants ignore it (YES) then the client should ignore the outstanding request and the

asynchronous ID is set to 0.

NOTE:

IGNORE ASYNC RESPONSE doesn’t interrupt or cancel the server transaction, it will only

discard the response message from memory as soon as the response comes from the server.

The asynchronous call ID identifies the server request. If this is the wrong ID then it may

discard a server’s response that you’ll need, therefore it is important that you keep attention

which ID you are ignoring. Using separate worksets for this view is a good technique.

Event Action ‘SHOW_RESULTS:

The event action SHOW_RESULTS will show the results of a request:

Ensure that the flag ‘Always’ is set for Import to Export on the Event-Action properties.

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 16/22

Other Event Actions

If there is no outstanding request then it will fire off the user-event

‘ENTER_NEW_SEARCH_PATTERN’. This will show a dialogbox to enter your search

pattern.

If the user clicks ‘Search’ on that dialog box then it will start the asynchronous call:

 Please note that RESPONSE SCOPE is set to GLOBAL instead of PSTEP.

If there is a response from the request while the procedure step is still active then the event

‘SHOW_RESULTS’ will be activated.

Program Flow of the CLIENT_MENU procedure

If the clients decides not to wait for the response and flows back to the client procedure then

the NOTIFY EVENT will not be active anymore when the response should arrive.

You lose the automatic event activation because the client procedure for search is no longer

active and the runtime cannot ‘see’ anymore the event.

You still have to verify the response in one way or another. If you don’t do this then you will

create memory leaks and would eventually run low in memory and cause crashes.

There are various methods and techniques to circumvent this.

However, one of the best mechanisms is explained here:

In our example, we are going to use a polling mechanism in order to simulate the response

notify event of the search client procedure.

This can be materialized by usea of user-events in the client menu procedure.

For this purpose, you will need one view of the workset type async_request. We ensure that

the flag ‘Initialize on every entry’ is turned off for this view.

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 17/22

The polling happens on basis of an user-event, this technique allows us to launch the polling

at any given time in the procedure step. However, the polling request needs to be done

explicitly.

You may also use the Timer Control event that was originally supplied with Composer

4/COOL:Gen 4.1A and later releases. This has the advantage that you don’t have to launch

explicitly the polling event.

Procedure Body of OPEN event of Client_Menu Procedure

In this sample, we check whether we have to launch the polling event. The request ID is

basically the asynchronous ID. If the value is 0 then no outstanding request is pending.

If different from 0 then there is a polling required (you may now understand also why we set

always ID to 0 after a request’s response is handled in the search client procedure)

The POLLEVENT Event Action:

In this example, the POLLEVENT will check whether a request is still outstanding (this is a

good practice to handle unforeseen circumstances).

Afterwards a CHECK ASYNC RESPONSE will verify whether there is already a response

available from the request. If it is available then a small notification dialog box is shown to

tell the user that a response is available. The user will now have the opportunity to go back to

the search client window in order to view the results:

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 18/22

The actual retrieval of the response happens in our search client procedure.

NOTE:

The CHECK ASYNC RESPONSE will never remove the response from its memory and

therefore a GET ASYNC or IGNORE ASYNC is still needed.

View the Results or Ignore Events

These two events handle the answer of the user whether to view it or not.

If the user clicks the ‘NO’ button then the response will be put in the garbage bin via the

IGNORE ASYNC RESPONSE.

If the user wants to view it (‘YES’) then the command RESULTS is set and we flow to the

search client procedure.

RESULTS command in the SEARCH CLIENT PROCEDURE

If the user responds positively then it flows to the search client procedure. The command will

now be checked for RESULTS:

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 19/22

The user-event SHOW_RESULTS will be activated.

When to poll?

A crucial question is when to execute polling event?

The general rule we recommend is to perform a polling event every time you return from a

flow. This can happen in a OPEN window event or in the procedure body.

Potentially, you may consider to perform a polling event in each click event. However this

would be potentially an overkill and a serious overhead if there are many events.

Special Asynchronous Call Cases: Multiple Calls

Let us now increase the level of complexity; we want to launch multiple search requests...

This require some serious management of the asynchronous responses (thus ID etc). Each

request has its own unique ID and this ID need to be used in order to differentiate from the

others.

The ID doesn’t tell you anything which server transaction it belongs to. So, we also need a

mechanism to associate an ID with a server transaction.

Another complexity is that we also have to check whether there are any outstanding requests

etc.

Multiple requests to various server transactions require asynchronous call management. It is

simpler when you allow multiple requests for the same server transaction, however you still

need some sort of management of these calls.

RESULTS command check.

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 20/22

A possible implementation is to use an event table (in a local database via ODBC) or via a

RGV.

The below example gives such an event table structure:

The Event Type table contains all possible server procedure calls who can be called in

asynchronous mode with GLOBAL scope.

The table Event Queue contains per user which outstanding server calls are in progress.

For each new request a new occurrence is written in the Event Queue table for the specified

user. This table should be verified during a poll event (or polling action block).

Additionally, it would be possible to extend the table EVENT TYPE with an extra field

‘COMMAND’. If a need to be processed then it can use the corresponding command of that

event type. A TIREVENT needs to be called in order that the correct user-event is executed.

If you use a RGV then you can opt for a simplified structure; define one workset with two

attributes: ID and COMMAND. Each server has its own specific command.

The RGV should be defined in the procedure or passed to the possible procedures that may

contain polling events.

It is also important that if you use many procedures that need to check for any outstanding

requests then it is wiser to use action blocks in your polling event… just to avoid that you

have much coding work.

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 21/22

An example polling event (usage of a RGV):

In this case the RGV is checked for any outstanding requests. If there is an outstanding

request (<>0) then it checks whether there is a response available from that request. If this is

the case then it will queue up an event via its corresponding command and TIREVENT.

For each call to an asynchronous server you should set a command and the ID for the RGV:

After an answer is processed the RGV needs to be ‘corrected’ (to avoid overflows):

Whether you chose for table or RGV approach you always have to foresee something to

monitor the outstanding requests.

Conclusions:

For simple cases you can consider GLOBAL scope and it would mean that you have to track

the asynchronous ID and carry it along to the procedure steps in order to be able to process it

 CA Gen
Asynchroneous Communications Guide

3/10/2009 Asynchronous Communication Guide 22/22

afterwards. You can carry over the ID with dialog flow view matching or by USE view

matchings.

For multiple requests of multiple servers you should have a proper request management

system in place (preferable via a template). If you don’t do this then you will create havoc in

memory management (creating memory leaks) due the unprocessed responses etc.

The user should also be aware that each request requires up to 32K to process the answer.

If you have 100 outstanding calls then the application will claim 100x32K = 3MB additional

memory in the worst case.

